Field Studies of DRAM Errors

- AMD Boxborough

- University of Toronto & Google

- Carried out over 11 months approx. 50 M DIMM-days.
- Jaguar 18,866 nodes each with
 - Two six-core AMD Opterons
 - Four 72-bit DDR2 channels , 2 DIMMs/channel, 1
 Rank/DIMM, 18 x4 chips/rank (16 for data + 2 for SSC-DSD)
 - memory scrubber
 - Memory controllers log error events every 5 seconds.

Taxonomy

- Fault
 - Underlying failure mode (e.g. stuck at fault or particle induced bit flip)
- Error
 - Visible symptom of a fault (e.g. ECC mismatch)
- Failure
 - Transition from a period of correct service to incorrect service.

Types of Faults

- Hard Faults
 - Causes a memory location to consistently return incorrect data
- Transient Fault
 - Wrong data until it is overwritten
- Intermittent fault
 - Sometimes sends out wrong data (e.g. under elevated temperature)

Intermittent + Hard Faults -> *Recurring Faults* Transient Faults -> *Non-recurring Faults*

- Memory controller logs data from the Machine Check Architecture (MCA) registers every 5 seconds.
- Log has physical address, time stamp, corrected/uncorrected error, ECC codeword.
- MCA regs retain their values across warm resets thus uncorrected errors that cause such resets can also be logged.
- Overflow bit to indicate that at least one error was not logged.

Methodology : Classifying faults

- Determine the fault type from the error logs.
- Node experiences errors in one scrub interval only
 - Indicates non-recurring fault
- If a node logs errors from a single DRAM device in multiple scrub intervals
 - Indicates either a single recurring fault or multiple non-recurring faults.
 - The study sees very little occurrence of multiple non-recurring faults in a device.

Observations

Figure 3. Corrected errors per month across the Jaguar system.

Figure 4. Faults experienced per month across the Jaguar system.

Average no. of faults/month = 927.5 Average no. of errors per month = 250,000

DRAM Failure Incidents: 2.95 % of DIMMs or 5.9% of nodes

In line with Schroeder study.

DRAM Fault Rate: 1 DRAM fault every six to seven hours.

Not rare.

Observations

Figure 5. Faulty nodes as a function of the number of scrub intervals with at least one error.

26.8% of errors manifested only in one scrub interval. A total of 29.6% of all errors are due to non-recurring faults. Recurring faults main culprit – 70%.

Patterns of Failing Addresses

Failure Pattern	% Faulty Nodes	Failure Pattern	% Faulty Nodes	Failure Pattern	% Faulty Nodes
1 Bit	47.6%	1 Column	10.5%	1 Lane	4.8%
2 Bits	0.7%	1 Row	12.0%	1 Rank	0.2%
3 Bits	0.05%	1 Bank	16.2%	2 DRAMs	1.1%
1 Word	2.4%	1 DRAM	2.4%	1 Channel	0.1%
2 Words	0.3%	2 Columns	0.5%	1 Node	0.4%
3 Words	0.1%	2 Rows	0.9%	Total	100%

 % represents nodes which show all errors on the same location.

- 47.6% same bit
- 38.7% to same DRAM row, col, bank.
- 4.8% of errors on the same lane i.e. either a stuck DQ or DQS pin.

DRAM Errors in the Wild

- Study on Google's fleet of servers spanning 2.5 years.
- 6 different platforms defined by (motherboard + DIMM type combo)
 - DDR1, DDR2, DDR3, FB-DIMM (1,2,4Gb)
- Distributed logging and analysis of errors
- Uncorrectable errors always lead to shutdown and DIMM replacement
- No distinction between hard and soft errors.

Errors per machine

Table 1: Memory errors per year:							
Platf	Tech.	Per machine					
I lati.		CE	CE	CE	CE	UE	
		Incid.	Rate	Rate	Median	Incid.	
		(%)	Mean	C.V.	Affct.	(%)	
A	DDR1	45.4	19,509	3.5	611	0.17	
В	DDR1	46.2	23,243	3.4	366	_	
C	DDR1	22.3	27,500	17.7	100	2.15	
D	DDR2	12.3	20,501	19.0	63	1.21	
E	FBD	_	_	_	_	0.27	
F	DDR2	26.9	48,621	16.1	25	4.15	
Overall	_	32.2	22,696	14.0	277	1.29	

- Avg no of correctable errors/year > 22000
- Highly variable no of errors for every platform
 - Coefficient of Variation between 3.4 and 20
 - 20% of machines contribute 90% of errors
- 93% of machines that see 1 correctable error see at least one more in the same year.

Errors per DIMM

Platf	Tech	Per DIMM				
1 1401.	reen.	CE	CE	CE	CE	UE
		Incid.	Rate	Rate	Median	Incid.
		(%)	Mean	C.V.	Affct.	(%)
A	DDR1	21.2	4530	6.7	167	0.05
В	DDR1	19.6	4086	7.4	76	_
C	DDR1	3.7	3351	46.5	59	0.28
D	DDR2	2.8	3918	42.4	45	0.25
E	FBD	_	_	_	-	0.08
F	DDR2	2.9	3408	51.9	15	0.39
Overall	_	8.2	3751	36.3	64	0.22

- Avg DIMM sees > 4000 CEs a year
- Error incidences vary by platform type
 - but not DRAM technology type or by manufacturer
- Difference in mobo and DIMM design responsible ??
- Uncorrected errors high for C & D which do not have chipkill but why is it high for F too ?
- For all platforms 20% of DIMMs contribute > 95% of errors

Correlation between Correctable Errors

- CEs in the same month lead to between 13X & 91X increase in CE probability
- CEs in the previous month lead to between 35X to 228X increase in CE probability

 The number of CEs in a month increases continuously based on the number of CEs in the previous month & is an order of magnitude higher than the CEs in the previous month

Correlation between Uncorrectable Errors

- Strong probability of UEs if there were CEs in the same month.
- Probability of UEs increases with observed CE rates in the same month
- About 65-80% of UEs are preceded by CEs in the same month.
- Absolute UE probability (1.7-2.3%) is too low to use pre-emptive DIMM replacement.

Correlation between DIMMs on the same m/c

- If there are errors in one DIMM, there is some increase in the probability of errors in another DIMM but correlation is not as high as in the previous figures.
- Environmental factors not so significant ??

Effect of DIMM Capacity

- Doubling the capacity has -ve or no effect.
- But there is not a clear correlation between chip size and error rates/probabilities.
- Other confounding factors at work.

• CE rates increase by 3X when the temperature increases by 20C for B,C&D and by 10C for A.

- Temperature could be a proxy for utilization, i.e. CPU activity and allocated memory capacity not clear if the temp and error rate relationship is cause-effect type.
- Isolated the temperature effects (by dividing the utilization into deciles and reporting temp effects in each decile)
 - significantly smaller effect of temperature

• With CPU utilization and allocated memory, CE rates grew logarithmically.

- Isolated the effect of utilization by measuring error rates in different temperature ranges
 - shows strong correlation between utilization and error rates
- High error rate for high utilization
 - maybe due to higher detection of errors
 - but platforms with memory scrubbers also show increase indicating that these are maybe hard errors or errors induced on the motherboard or DIMM datapath

- CE rates increase quickly as DIMM population ages beyond 10 months.
- This continues till 20 months and then the slope flattens out.
- Older DIMMs that did not have CEs in the past will not develop errors later on.
- Error rates vary similarly with age for all different types of DRAMs.
- Very little infant mortality DIMMs are burnt-in prior to putting them into servers ?

Conclusions

- A third of machines and 8% of DIMMs saw at least one CE per year, much higher than what lab studies of DIMMs have indicated.
- Chipkill enabled nodes have 4-10 times lower UE rates compared to SECDED ones.
- Memory errors are strongly correlated.
- Incidence of CEs increases with age and the incidence of UEs decrease with age (because the bad ones are replaced).
- No evidence that newer generation DIMMs are any worse than older ones.
- Temperature has a surprisingly low effect on memory errors.
- Error rates are strongly correlated with utilization.
- Error rates are unlikely to be dominated by soft errors.

